Showing posts with label 466001. Show all posts
Showing posts with label 466001. Show all posts

Wednesday, November 10, 2010

[转]东京大学开发出超柔有机晶体管

本博主感言日本人真NB,反观中国的IC领域,基本处于追赶状态。并且即使追赶,貌似差距都是越来越远。前几天和国外同学邮件,聊到他们现在在做PCM(phase change memory),而我这概念之前听都没听过,并且之后有意的问了下实验室做物理和全定制的,貌似也没听过。我们作为国内做芯片的国家队(也许是自封的)尚且如此。另外,在水木看到一个关于美洲豹和天河的比较,下面这个观点很震撼,也许可以解释中国落后的一部分甚至主要原因:

本质上天河和MD的豹子研发目的是不同的
豹子:  计算软件-》提炼计算模型-》设计内部互联架构-》开建
天河:  跑分软件-》分析上一代跑分机瓶颈 -》开发大水管-》开建

以下是转载的正文:      

原文链接:http://china.nikkeibp.com.cn/news/semi/53997-20101109.html 

     东京大学的研究小组开发出了曲率半径仅为0.1~0.3mm、“即使折起来或揉成一团性能也不会劣化的超柔(Ultra-Flexible)”有机 CMOS环形振荡器(Ring Oscillator)和TFT阵列薄膜(Array Sheet),并试制出了医用导管。设想应用于直径2mm左右的血管内部凹凸处的检查和覆盖人体皮肤表面使用的各种医用传感器等。论文已刊登于《Nature Materials》2010年11月7日的在线版上。该产品还将出现在2010年12月发行的杂志封面上。
开发该产品的是东京大学研究生院工学系研究科、电气系工学专业的染谷隆夫教授和关谷毅讲师的研究小组注1)。该研究小组此前曾开发出过安装在柔性有机TFT阵列薄膜上的多种功能器件。
但是,包括染谷及其它研究小组的试制实例在内,原有的高柔性有机晶体管薄膜领域存在以下几个课题。(1)弯曲半径最小只能达到0.5mm,一般情况 下,数mm已经为极限值;(2)驱动电压与弯曲半径之间存在此消彼长的关系,在弯曲半径为0.5mm的情况下,驱动电压高达40V;(3)除了采用转印法 之外,实现CMOS电路较为困难且量产性较低;(4)难以实现微细化,工作性能存在极限,等等。此次染谷等研究人员解决了上面提到的所有课题。
具体来说就是把弯曲半径最小缩小到了0.1mm,为原来的几十分之1~1/5,通过将栅极绝缘膜厚度从原来的500nm大幅降为5~6nm,驱动电压 降低到了2V左右,不到原来的1/10。另外,由于开发出了在室温或100℃以下制造较薄的栅极绝缘膜、半导体和各电极的工艺,因此在不耐热的超柔 (Ultra-Flexible)基板上直接制作CMOS电路便成为可能。另外,由于能够降低驱动电压,有机晶体管按照缩放比例(scaling)实现制 造工艺微细化的效果也令人期待。
事实上,此次制成的5段有机CMOS环形振荡器在低电压驱动的情况下,实现了每段延迟仅为4.5ms的“全球最快速度”(染谷)。通道长为20μm。
CMOS电路中使用的p型有机半导体采用了并五苯。迁移率μ高达0.5cm2/Vs。另一方面,n型有机半导体采用了氟代酞菁铜(F16CuPc)。虽然μ为0.02cm2/Vs,与并五苯有一定差距,但“这种程度的差距可以在电路方进行补偿”(染谷)。
通过在凹凸不平的基板上涂布“粉底”实现平坦化
此次开发的最大要点是,在保证高成品率的同时减小了栅极绝缘膜的厚度,从而降低了驱动电压。同时,这也得益于薄膜基板大幅实现了平坦化。
在厚度为12.5μm、有几十nm凹凸的市售聚酰亚胺基板上,采用旋转涂布法涂布上聚酰亚胺前体,然后加热到180℃,这种前体就变成聚酰亚胺,在遮 盖住基板凹凸不平之处的同时,也与基板融为一体。平坦化后的凹凸处“为0.2~0.3nm左右,平坦程度几乎达到原子级别”(染谷)。因此,凭借可与利用 硅基板时相匹敌的可靠性,有望制造较薄的栅极绝缘膜和更高性能的半导体。(记者:野泽 哲生)
注1)该研究获得了科学技术振兴机构(JST)战略性创造研究推进业务(CREST)课题解决型基础研究的资金援助。

开发的超柔TFT阵列薄膜。聚酰亚胺基板厚度仅为12.5μm。摄影:关谷毅(点击放大)

折成一团的该薄膜。即便如此,其性能也不会劣化。摄影:关谷毅(点击放大)

制成5段CMOS环形振荡器的薄膜。摄影:关谷毅(点击放大)

制成具备压力传感器功能的直径约2mm的导管。照片由东京大学提供(点击放大)

具备压力传感器功能的导管的构造模式图。图片由东京大学提供(点击放大)

在导管上螺旋状缠绕的TFT阵列薄膜示意图。图片由东京大学提供(点击放大)

Saturday, November 6, 2010

扣扣保镖初体验(附扣扣保镖下载地址)

今天看到CB上采访马化腾的文章,文中马化腾说扣扣保镖几天就感染了20 000 000用户,说不采取措施的话,将会感染80 000 000万用户,我很好奇,扣扣保镖到底有何厉害之处,能让那么多人感染。于是,我也想被感染一次,于是去下扣扣保镖。

360官网早就自己把扣扣保镖阉割了,自然没法下,搜到一个pchome的链接,谁知下载时提示已删除(看来QQ的能量很大啊),搜了半天,终于搜到一个可用的链接,发现保镖还是挺小的,才几M,速度,安装,启动(保镖自动会体检)。

启动QQ,很遗憾,没看到他俩打架。。。。

启动后,QQ提示一如既往的“安全扫描”(我个人主观以为必然扫描过用户数据,起码在揭露之前会),并且没法关闭,正想骂这扣扣保镖有何用,切到扣扣保镖一看,原来扣扣保镖所有功能默认都是关闭的,除了检测QQ完整性,避免QQ被感染(想到网上的一句话,“忽然觉得360和腾讯真是情深似海,爱恨交加。即使到了公开对立的程度,启动QQ的时候,360仍然一如既往地保护着他,为他扫描盗号木马。你爱一个人,爱到恨得地步仍然舍不得他受伤。我掩面泪奔……亲爱的,我要做你的360!!!”)。

体检完了,说我电脑有30+个问题,第一个就是说未装360,直接pass,其他的就是说有些QQ功能未优化,如广告屏蔽,速度将这些功能全开,重启QQ,看是否生效,异或是否打架。

很遗憾,QQ还是没有看到他们打架,莫非我装晚了,他们真的又和好了。

体验新的,在扣扣保镖下保护的QQ,点一个好友,发现聊天界面的广告没了,真清爽,用了QQ半个小时,没有看到弹窗新闻,弹窗广告,真爽!!并且QQ功能貌似都还正常。

再次,个人推荐一下各位害怕被QQ扫描隐私的网友(强调一下,QQ扫描用户隐私我没有证据,只是网上有的说有证据,并且我也主观认为他会),并且不想看到QQ一堆弹窗广告的用户可以使用一下扣扣保镖,感觉真的很不错。

但是,个人不保证扣扣保镖不会扫描用户隐私。另外,个人不推荐安装360安全卫士,太大了,并且也害怕被扫描,个人推荐微软的MSE。

鉴于网上大部分的扣扣保镖下载链接都被删了,我在这里附一个下载地址:


最后附一张扣扣保镖和QQ亲密共存的艳照